Continuous-time mediation analysis for repeated mediators and outcomes

Kateline Le Bourdonnec¹, Cécilia Samieri¹, Linda Valeri², Cécile Proust-Lima¹

¹INSERM U1219, Univ. Bordeaux, Bordeaux, France ²Columbia Univ., New-York, United-States

E-mail for correspondence: kateline.le-bourdonnec@u-bordeaux.fr

Abstract: Mediation analysis focuses on the underlying causal mechanisms between an exposure, an outcome, and an intermediate variable called mediator. Initially developed for cross-sectional studies, it has been extended to the framework of longitudinal data by discretizing the assessment times of mediator/outcome. Yet, processes in play in longitudinal studies are usually defined in continuous time and measured at irregular and subject-specific visits. This is the case in dementia research when interested in causal mechanisms involving neurodegeneration and cognitive functioning.

Our objective was to propose a methodology to estimate the causal mechanisms between a time-fixed exposure (X), a mediator process (\mathcal{M}_t) and an outcome (Y_t) both measured repeatedly over time in presence of a time-dependent confounding process (\mathcal{L}_t) .

We considered two causal estimands, a path-specific effect and a stochastic intervention analogue to natural effect, and defined the identifiability assumptions required to get the estimands estimable. Then, we used a dynamic multivariate model based on differential equations for their estimation.

We applied our method in a population-based cohort of cerebral aging to investigate the causal mechanism between a genetic factor (APOE4) and cognitive functioning potentially mediated by neurodegeneration and confounded by vascular brain lesions.

Key words: Causal Inference; Mediation Analysis; Continuous-time; Longitudinal data ; Dynamic model;